Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(18): 12485-12496, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34594514

RESUMO

Intraspecific niche differentiation can contribute to population persistence in changing environments. Following declines in large predatory fish, eutrophication, and climate change, there has been a major increase in the abundance of threespine stickleback (Gasterosteus aculeatus) in the Baltic Sea. Two morphotype groups with different levels of body armor-completely plated and incompletely plated-are common in coastal Baltic Sea habitats. The morphotypes are similar in shape, size, and other morphological characteristics and live as one apparently intermixed population. Variation in resource use between the groups could indicate a degree of niche segregation that could aid population persistence in the face of further environmental change. To assess whether morphotypes exhibit niche segregation associated with resource and/or habitat exploitation and predator avoidance, we conducted a field survey of stickleback morphotypes, and biotic and abiotic ecosystem structure, in two habitat types within shallow coastal bays in the Baltic Sea: deeper central waters and shallow near-shore waters. In the deeper waters, the proportion of completely plated stickleback was greater in habitats with greater biomass of two piscivorous fish: perch (Perca fluviatilis) and pike (Esox lucius). In the shallow waters, the proportion of completely plated stickleback was greater in habitats with greater coverage of habitat-forming vegetation. Our results suggest niche segregation between morphotypes, which may contribute to the continued success of stickleback in coastal Baltic Sea habitats.

2.
mSphere ; 6(5): e0012721, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34468165

RESUMO

Recreational boating can impact benthic ecosystems in coastal waters. Reduced height and cover of aquatic vegetation in shallow Baltic Sea inlets with high boat traffic have raised concerns about cascading effects on benthic communities in these ecosystems. Here, we characterized the diversity and composition of sediment-associated microbial and meiofaunal communities across five bays subjected to low and high degrees of boating activity and examined the community-environment relationships and association with bay morphometry. We found that recreational boating activity altered meiofauna alpha diversity and the composition of both micro- and meiobenthic communities, and there were strong correlations between community structure and morphometric variables like topographic openness, wave exposure, water surface area, and total phosphorous concentrations. Inlets with high boat traffic showed an increase of bacterial taxa like Hydrogenophilaceae and Burkholderiaceae. Several meiofauna taxa previously reported to respond positively to high levels of suspended organic matter were found in higher relative abundances in the bays with high boat traffic. Overall, our results show that morphometric characteristics of inlets are the strongest drivers of benthic diversity in shallow coastal environments. However, while the effects were small, we found significant effects of recreational boating on benthic community structure that should be considered when evaluating the new mooring projects. IMPORTANCE With the increase of recreational boating activity and development of boating infrastructure in shallow, wave-protected areas, there is growing concern for their impact on coastal ecosystems. In order to properly assess the effects and consider the potential for recovery, it is important to investigate microbial and meiofaunal communities that underpin the functioning of these ecosystems. Here, we present the first study that uses DNA metabarcoding to assess how benthic biodiversity in shallow coastal areas is impacted by recreational boating. Our study shows a relatively small, but significant, effect of recreational boating both on meiofauna alpha diversity and meiofauna and bacterial community composition. However, both meiofauna and bacterial community composition in shallow benthic habitats is mediated to a higher degree by abiotic variables, such as topographic openness, area or size of the inlets, and wave exposure. Despite the fact that the effects were small, such impacts on benthic biodiversity should be considered in the management of coastal shallow habitats.


Assuntos
Biodiversidade , Esportes Aquáticos , Animais , Ecossistema , Sedimentos Geológicos , Invertebrados/classificação , Oceanos e Mares , Salinidade
3.
Commun Biol ; 3(1): 459, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855431

RESUMO

Regime shifts in ecosystem structure and processes are typically studied from a temporal perspective. Yet, theory predicts that in large ecosystems with environmental gradients, shifts should start locally and gradually spread through space. Here we empirically document a spatially propagating shift in the trophic structure of a large aquatic ecosystem, from dominance of large predatory fish (perch, pike) to the small prey fish, the three-spined stickleback. Fish surveys in 486 shallow bays along the 1200 km western Baltic Sea coast during 1979-2017 show that the shift started in wave-exposed archipelago areas near the open sea, but gradually spread towards the wave-sheltered mainland coast. Ecosystem surveys in 32 bays in 2014 show that stickleback predation on juvenile predators (predator-prey reversal) generates a feedback mechanism that appears to reinforce the shift. In summary, managers must account for spatial heterogeneity and dispersal to better predict, detect and confront regime shifts within large ecosystems.


Assuntos
Ecossistema , Cadeia Alimentar , Comportamento Predatório , Migração Animal , Animais , Peixes
4.
Ambio ; 49(2): 517-530, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31297728

RESUMO

Sustainable management of coastal and inland water areas requires knowledge of how tourism and recreation affects the ecosystems. Here, we present the first systematic review and meta-analysis to quantify to what extent recreational boat traffic and infrastructure for mooring affect the abundance of submerged vegetation on soft bottoms. Our systematic search yielded 25 studies containing data on effects of boat traffic, docks and mooring buoys on vegetation abundance. The abundance below docks was on average 18% of that in controls, and areas with boat traffic had on average 42% of the abundance in control areas. Mooring buoys often created scour areas without vegetation. However, the effects were variable and there were too few studies to test the reasons for this variability. We conclude that boating can cause significant declines in submerged vegetation but that informed management of boat traffic and improved design of docks and buoys can reduce negative impacts.


Assuntos
Ecossistema , Plantas , Navios , Conservação dos Recursos Naturais , Recreação
5.
Ambio ; 48(6): 539-551, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30167979

RESUMO

Recreational boating increases globally and associated moorings are often placed in vegetated habitats important for fish recruitment. Meanwhile, assessments of the effects of boating on vegetation, and potential effects on associated fish assemblages are rare. Here, we analysed (i) the effect of small-boat marinas on vegetation structure, and (ii) juvenile fish abundance in relation to vegetation cover in shallow wave-sheltered coastal inlets. We found marinas to have lower vegetation cover and height, and a different species composition, compared to control inlets. This effect became stronger with increasing berth density. Moreover, there was a clear positive relationship between vegetation cover and fish abundance. We conclude that recreational boating and related moorings are associated with reduced cover of aquatic vegetation constituting important habitats for juvenile fish. We therefore recommend that coastal constructions and associated boating should be allocated to more disturbance tolerant environments (e.g. naturally wave-exposed shores), thereby minimizing negative environmental impacts.


Assuntos
Peixes , Esportes Aquáticos , Animais , Ecossistema , Meio Ambiente , Navios
6.
PLoS One ; 12(8): e0181419, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28854185

RESUMO

Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer) and spatial scales (local and regional), using causal modeling based on data from a field survey along the central Swedish Baltic Sea coast. The two best-fitting regional-scale models both suggested that in spring, high cover of vegetation reduces water turbidity. In summer, the relationships differed between the two models; in the first model high vegetation cover reduced turbidity; while in the second model reduction of summer turbidity by high vegetation cover in spring had a positive effect on summer vegetation which suggests a positive feedback of vegetation on itself. Nitrogen load had a positive effect on turbidity in both seasons, which was comparable in strength to the effect of vegetation on turbidity. To assess whether the effect of vegetation was primarily caused by sediment stabilization or a reduction of phytoplankton, we also tested models where turbidity was replaced by phytoplankton fluorescence or sediment-driven turbidity. The best-fitting regional-scale models suggested that high sediment-driven turbidity in spring reduces vegetation cover in summer, which in turn has a negative effect on sediment-driven turbidity in summer, indicating a potential positive feedback of sediment-driven turbidity on itself. Using data at the local scale, few relationships were significant, likely due to the influence of unmeasured variables and/or spatial heterogeneity. In summary, causal modeling based on data from a large-scale field survey suggested that aquatic vegetation can reduce turbidity at regional scales, and that high vegetation cover vs. high sediment-driven turbidity may represent two self-enhancing, alternative states of shallow bay ecosystems.


Assuntos
Fitoplâncton/crescimento & desenvolvimento , Água do Mar/análise , Países Bálticos , Monitoramento Ambiental , Sedimentos Geológicos/análise , Modelos Biológicos , Modelos Químicos , Nefelometria e Turbidimetria , Nitrogênio/análise , Oceanos e Mares , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...